News

Multilayer Ceramic Technologies: MLCC, LTCC, and HTCC‌ ‌(Technical Specifications, Manufacturing Processes, and Applications)

1. Overview of Multilayer Ceramic Technologies‌

Multilayer ceramic technologies are foundational to modern electronics manufacturing. Three primary variants dominate the field:

· ‌MLCC‌ (Multilayer Ceramic Capacitor)

· ‌LTCC‌ (Low-Temperature Cofired Ceramic)

· ‌HTCC‌ (High-Temperature Cofired Ceramic)

Their distinctions lie in‌material selection‌,‌sintering temperatures‌,‌process details‌, and‌application scenarios‌. 

 


‌2. Technical Specifications Comparison‌

‌Parameter‌

‌MLCC‌

‌LTCC‌

‌HTCC‌

‌Dielectric Material‌

Barium Titanate (BaTiO₃), TiO₂, CaZrO₃

Glass-Ceramic, Ceramic-Glass Composite

Al₂O₃, AlN, ZrO₂

‌Metal Electrodes‌

Ni/Cu/Ag/Pd-Ag (internal); Cu/Ag (terminals)

Ag/Au/Cu/Pd-Ag (low-melting alloys)

W/Mo/Mn (high-melting metals)

‌Sintering Temp.‌

1100–1350°C

800–950°C

1600–1800°C

‌Key Products‌

Capacitors

Filters, Duplexers, RF Substrates, Antennas

Ceramic Substrates, Power Modules, Sensors

‌Applications‌

Consumer Electronics, Automotive, Telecom

RF/Microwave Circuits, 5G Modules

Aerospace, High-Power Electronics



‌3. Manufacturing Process Flow‌

‌Shared Core Steps‌:

1. ‌Tape Casting‌: Forming green ceramic sheets (thickness: 10–100μm).

2. ‌Screen Printing‌: Depositing electrode patterns (e.g., Ag paste for LTCC, Ni for MLCC).

3. ‌Lamination‌: Stacking layers under pressure (20–50 MPa).

4. ‌Sintering‌: Firing in controlled atmospheres (N₂/H₂ for MLCC, air for LTCC/HTCC).

5. ‌Termination‌: Applying external electrodes (e.g., Ag plating for MLCC).


‌Critical Differences‌:

· ‌Via Drilling‌: LTCC/HTCC require laser-drilled vias for vertical interconnects; MLCC skips this step.

· ‌Sintering Atmosphere‌:


  • MLCC: Reducing atmosphere (to prevent Ni/Cu oxidation).
  • LTCC/HTCC: Air or inert gas (compatible with noble metal electrodes).


· ‌Layer Count‌:


  • MLCC: Up to 1000+ layers (for high-capacitance designs).
  • LTCC/HTCC: Typically 10–50 layers (optimized for RF/power performance).




‌4. Performance Trade-offs‌

‌Metric‌

‌MLCC‌

‌LTCC‌

‌HTCC‌

‌Capacitance Density‌

100 μF/cm³ (X7R-grade)

N/A (non-capacitive focus)

N/A

‌Thermal Conductivity‌

3–5 W/m·K

2–3 W/m·K

20–30 W/m·K (AlN-based)

‌CTE Matching‌

Poor (vs. Si)

Moderate

Excellent (Al₂O₃ ≈ 7 ppm/°C)

‌High-Frequency Loss‌

Tan δ < 2% (at 1 MHz)

Low insertion loss (<0.5 dB @ 10 GHz)

Stable up to THz frequencies



‌5. Emerging Innovations‌

· ‌Ultra-High Layer MLCC‌: TDK’s 0.4μm-layer technology achieves 220μF in 0402 packages.

· ‌3D LTCC Integration‌: Kyocera’s embedded passives reduce RF module size by 60%.

· ‌HTCC for Extreme Environments‌: CoorsTek’s AlN substrates withstand 1000°C in aerospace sensors.



‌Conclusion‌: MLCC, LTCC, and HTCC technologies address distinct needs across the electronics spectrum. MLCC dominates miniaturized passive components, LTCC enables compact RF systems, while HTCC excels in harsh-environment applications. Process optimizations—from material science to via architecture—drive their continued evolution in 5G, EVs, and advanced aerospace systems.




 

Related News
X
We use cookies to offer you a better browsing experience, analyze site traffic and personalize content. By using this site, you agree to our use of cookies. Privacy Policy
Reject Accept